ES-320 HYDRAULICS L T P Cr 3 - 2 4 #### **RATIONALE** Subject of Hydraulics is a basic engineering subject and helps in solving fluid flow problems in the field of Civil Engineering. The subject deals with basic concepts and principles in hydrostatics, hydrokinematics and hydrodynamics and their application in solving fluid -mechanics problems. #### **DETAILED CONTENTS** #### **THEORY** - 1. Introduction: (1 hrs) - 1.1 Fluids: Real and ideal fluids - 1.2 Fluid Mechanics, Hydrostatics, Hydrodynamics, Hydraulics - 2. Properties of Fluids (definition only) (3 hrs) - 2.1 Mass density, specific weight, specific gravity, viscosity, surface tension cohesion, adhesion and , capillarity, vapour pressure and compressibility. - 2.2 Units of measurement and their conversion - 3. Hydrostatic Pressure: (8 hrs) - 3.1 Pressure, intensity of pressure, pressure head, Pascal's law and its applications. - 3.2 Total pressure, resultant pressure, and centre of pressure. - 3.3 Total pressure and centre of pressure on horizontal, vertical and inclined plane surfaces of rectangular, triangular, trapezoidal shapes - 4. Measurement of Pressure: (5 hrs) - 4.1 Atmospheric pressure, gauge pressure, vacuum pressure and absolute pressure. - 4.2 Piezometer, simple manometer and differential manometer, Bourden gauge | _ | E 1 | 1 £ | T1: 4 | T1 | |----|---------|----------|-------|-------| | Э. | Fundame | ntais oi | Fluia | FIOW: | (6 hrs) - 5.1 Types of Flow: Steady and unsteady flow, laminar and turbulent flow, uniform and non-uniform flow - 5.2 Discharge and continuity equation (flow equation) - 5.3 Types of hydraulic energy: Potential energy, kinetic energy, pressure energy - 5.4 Bernoulli's theorem; statement and description (without proof of theorem) - 5.5 Venturimeter - 6. Flow Measurements (brief description with simple numerical problems) (6 hrs) - 6.1 Venturimeter - 6.2 Pitot tube - 6.3 Orifice and Orificemeter - 6.4 Current meters - 6.5 Notches and weirs (simple numerical problems) - 7. Flow through Pipes: (10 hrs) - 7.1 Definition of pipe flow; Reynolds number, laminar and turbulent flow explained through Reynold's experiment - 7.2 Critical velocity and velocity distributions in a pipe for laminar - 7.3 Head loss in pipe lines due to friction, sudden expansion and sudden contraction, entrance, exit, obstruction and change of direction (No derivation of formula) - 7.4 Hydraulic gradient line and total energy line - 7.5 Flow from one reservoir to another through a long pipe of uniform cross section (simple problems) - 7.6 Pipes in series and parallel - 7.7 Water hammer phenomenon and its effects (only definition and description) 8. Flow through open channels: - (9 hrs) - 8.1 Definition of an open channel, uniform flow and non-uniform flow - 8.2 Discharge through channels using - i) Chezy's formula (no derivation) - ii) Manning's formula (no derivation) - 8.3 Most economical channel sections (no derivation) - i) Rectangular - ii) Trapezoidal - 8.4 Head loss in open channel due to friction #### PRACTICAL EXERCISES - i) To verify Bernoullis Theorem - ii) To find out venturimeter coefficient - iii) To determine coefficient of velocity (C_v) , Coefficient of discharge (C_d) Coefficient of contraction (C_c) of an orifice and verify the relation between them - iv) To perform Reynold's experiement - v) To verify loss of head in pipe flow due to - a) Sudden enlargement - b) Sudden contraction - c) Sudden bend - vi) Demonstration of use of current meter and pitot tube - vii) To determine coefficient of discharge of a rectangular notch/triangular notch. ### **INSTRUCTIONAL STRATEGY** Hydraulics being a fundamental subject, teachers are expected to lay considerable stress on understanding the basic concepts, principles and their applications. For this purpose, teachers are expected to give simple problems in the class room and provide tutorial exercises so as to develop necessary knowledge for comprehending the basic concepts and principles. As far as possible, the teaching of the subject be supplemented by demonstrations and practical work in the laboratory. # **RECOMMENDED BOOKS** - 1. Jagdish Lal, "Fluid Mechanics and Hyraulics" Delhi Metropolitan Book Co. Pvt Ltd. - 2. Modi, PN, and Seth, SM; "Hydraulics and Fluid Mechanics", Delhi Standard Publishers Distributors - 3. Khurmi RS, "Hydraulics and Hydraulics Machines", Delhi S Chand and Co. - 4. Likhi SK., Laboratory Manual in Hydraulics, Delhi Wiley Eastern # SUGGESTED DISTRIBUTION OF MARKS | Topic No. | Time Allotted (Hrs) | Marks Allotted (%) | |-----------|---------------------|--------------------| | 1 | 1 | 1 | | 2 | 3 | 5 | | 3 | 8 | 16 | | 4 | 5 | 10 | | 5 | 6 | 13 | | 6 | 6 | 13 | | 7 | 10 | 22 | | 8 | 9 | 20 | | Total | 48 | 100 | #### ES-321 GENERAL ENGINEERING L T P Cr 4 - 2 5 #### RATIONALE A diploma holder has to assist in activities of installation, operation and maintenance etc of different machines and equipment. These activities are not branch specific and instead require him to know basics of civil, electrical and mechanical engineering. The subject of General Engineering has been included to impart basic knowledge of civil, electrical and mechanical engineering to the students. #### **Note:** - 1. The students of Civil Engineering, will be studying Part A (Mechanical Engineering) and Part B (Electrical Engineering) only. - 2. The students of Electrical engineering, Electronics and Communication Engineering, Instrumentation and Control Engineering, Computer Engineering and Information Technology will be studying Part A (Mechanical Engineering) and Part C (Civil Engineering) only. - 3. The students of Mechanical Engineering will be studying Part B (Electrical Engineering) and Part C (Civil Engineering) only. - 4. The students of remaining branches of engineering and technology will be studying all the three Parts A (Mechanical Engineering), Part B (Electrical Engineering) and Part C (Civil Engineering), unless specified otherwise - 5. A time of 2 hours per week has been allotted to Mechanical Engineering, 2 hours per week to Electrical Engineering and 2 hour per week to Civil Engineering in the lecture hours, for teaching theory and a lump-sum time of 2 hours per week has been allotted for the Practicals. # DETAILED CONTENTS PART-A #### MECHANICAL ENGINEERING #### Theory #### 1. Transmission of Power (8 hrs) 1.1 Belt Drives: Types of belts, belt materials, cross and flat belt drives, advantages of V-belt drive over flat belt drive. 1.2 Gears Drives: Types of gears (briefly), types of gear trains ### 2. Internal combustion Engines (10 hrs) - 2.1 Classification of IC engines - 2.2 Working principles of two stroke and four stroke engines - 2.3 Working principles of petrol engine and diesel engines - 2.4 Gas turbines (working principle only) ### 3. Refrigeration and Air Conditioning System (8 hrs) - 3.1 Different types of refrigeration principles and refrigerants - 3.2 Working of domestic refrigerator - 3.3 Working of Window type AC system ### 4. Hydraulics: (6 hrs) - 4.1 Classification of pumps (reciprocating and centrifugal) - 4.2 Working principles of both reciprocating and centrifugal pumps - 4.3 Turbine: Working principles of impulse turbine and reaction turbine # PRACTICAL EXERCISES IN MECHANICAL ENGINEERING - 1. Demonstration and study of main parts of 4 stroke petrol and diesel engines by actually dismantling them (The idea is to acquaint the students with the most common troubles occurring in the engines) - 2. Demonstration and study of main parts of 2 stroke petrol engine by actually dismantling it. (The idea is to acquaint the students with the most common trouble occurring in the engines) - 3. Demonstration and study of gas turbines through models - 4. Demonstration and study of different hydraulic pumps - 5. Demonstration and study of various drives for transmission of powers i.e. models of belts and gears. - 6. Demonstration and study of air conditioning system in a building - 7. Demonstration and study of domestic refrigerating system #### PART B ### **ELECTRICAL ENGINEERING** # Theory ### **Electrical:** 1. Basic Quantities of Electricity: (4 hrs) - 1.1 Definition of voltage, current, power and energy with their units - 1.2 Name of the instruments used for measurement of quantities such as voltmeter, ammeter, wattmeter, energy meter. - 1.3 Connection of the instruments in electric circuit - 2. Application and Advantages of Electricity: (3 hrs) - 2.1 Difference between AC and DC - 2.2 Various applications of electricity - 2.4 Advantages of electrical energy over other types of energy 3. Various Types of Power Plants: - (3 hrs) - 3.1 Elementary block diagram of thermal, hydro and nuclear power stations - 3.2 Brief explanation of the principle of power generation in above power stations - 4. Transmission and Distribution System (6 hrs) - 4.1 Key diagram of 3 phase transmission and distribution system - 4.2 Brief functions of accessories of transmission line - 4.3 Distinction between high and low voltage distribution system - 4.4 Identification of three phase wires, neutral wires and the earth wire on a low voltage distribution system - 4.5 Identification of the voltage between phases and between one phase and neutral - 4.6 Distinction between three phase and single phase supply - 5. Supply from the Poles to the Distribution Board: (4 hrs) - 5.1 Arrangement of supply system from pole to the distribution board - 5.2 Function of service line, energy meter, main switch, distribution board - 6. Domestic Installation: (6 hrs) - 6.1 Distinction between light and fan circuits and single phase power circuit, sub circuits - 6.2 Various accessories and parts of installation, identification of wiring systems - 6.3 Common safety measures and earthing - 6.4 Introduction to BIS code of safety and wiring installation - 7. Electric Motors and Pumps: (6 hrs) - 7.1 Definition and various application of single phase and three phase motors - 7.3 Conversion of horse power in watts or kilowatts - 7.4 Type of pumps and their applications - 7.5 Use of direct online starter and star delta starter #### PRACTICAL EXERCISES IN ELECTRICAL ENGINEERING: 1. Use of Megger: **Objective:** To make the students familiar with different uses of megger 2. Connection of a three phase motor and starter including fuses and reversing of direction of rotation. **Objective**: Students may be made familiar with the equipment needed to control a three-phase motor The students must experience that by changing any two phases, the direction of rotation is reversed. 3. Connection of a lamp, ceiling fan, socket outlet, geyser, floor grinder, voltage stabilizer etc. **Objective**: Students may be made familiar with the different types of equipment and circuits used in the domestic installations 4. Trouble shooting in a three-phase motor **Note:** The teacher may create anyone of the following faults - (a) Loose connections - (b) Blown fuse - (c) Tripped overload protection - (d) Incorrect direction of rotation - (e) Single phasing - (f) Burnt winding to be simulated by a loose connection behind a terminal box. **Objective**: The students must be able to detect the most common faults, which may occur in a three-phase motor, using meggar wherever necessary 5 Treatment of electric shock **Note:** The teacher may give a demonstration how an electric shock must be treated. **Objective**: Students must be trained to treat the persons suffering from an electric shock - 6. Demonstration and study of Domestic installation components used in single phase and three phase wiring - 7. Demonstration and study of distribution line components - 8 Demonstration and study of a distribution Board **Note:** Students may be asked to study the distribution board in the institution and note down all accessories. **Objective**: Students must be made familiar with the distribution board 9 Connections and taking reading of an energy meter $(1\phi \& 3\phi)$ **Objective**: Students may be asked to connect an energy meter to a load and calibrate reading 10. Demonstration and study of submersible motor pump set and its working **Objective**: To tell use of the set in water supply and irrigation works. #### PART C #### **CIVIL ENGINEERING** # Theory 1. Construction Materials (10 hrs) Basics of various construction materials such as stones, bricks, lime, cement and timber along with their properties, physical/ field testing and uses, elements of brick masonry. 2. Foundations (8 hrs) - i) Bearing capacity of soil and its importance - ii) Types of various foundations and their salient features, suitability of various foundations for heavy, light and vibrating machines - 3. Basic concept of concrete (8 hrs) Various ingredients of concrete, different grades of concrete, water cement ratio, workability, physical/ field testing of concrete, mixing of concrete 4. RCC (6 hrs) Basics of reinforced cement concrete and its use (elementary knowledge), introduction to various structural elements of a building #### PRACTICAL EXERCISES IN CIVIL ENGINEERING - 1. Testing of bricks - a) Shape and size - b) Soundness test - c) Water absorption - d) Crushing strength - 2. Testing of concrete - a) Slump test - b) Compressive Strength of concrete cube - 3. The students should be taken to different construction sites to show them various construction materials, concreting process and construction of RCC structural elements, foundations and other civil works Note: While imparting instructions, teachers are expected to lay more emphasis on concepts and principles. It will be better if the classes for general engineering are conducted in the laboratories and organized demonstrations for explaining various concepts and principles. ### RECOMMENDED BOOKS ### **Mechanical Engineering** - 1. General Mechanical Engineering by M. Adithan; TTTI, Chandigarh - 2. Basic Civil and Mechanical Engineering by Jayagopal; Vikas Publications, New Delhi - 3. IC Engines and Automobile Engineering by Dr.MP Poonia, Standard Publishers, New Delhi - 4. Refrigeration and Air Conditioning by RK Rajput; SK Kataria and sons; Ludhiana - Theory of Machines by RS Khurmi and JK Gupta; S. Chand and Company Ltd., New Delhi ### **Electrical Engineering** - 1. Electrical Technology Part 1: Basic Electrical Engineering by Theraja, BL; S Chand and Company, New Delhi - 2. Principles of Electrical Engineering by Gupta BR, S Chand and Company, New Delhi - 3. Basic Electrical Engineering by Mehta VK; S Chand and Company, New Delhi - 4. Basic Electricity and Measurements by Suryanarayan NV and N Delhi; Tata McGraw Hill, 1987, New Delhi - 5. Basic Electrical and Electronics Engineering by SK Sahdev; Dhanpat Rai and sons, New Delhi - 6. Basic Electrical Engineering by PS Dhogal, Tata McGraw Hill, New Delhi - 7. Basic Electricity by BR Sharma; Satya Parkashan, New Delhi # **Civil Engineering** - 1. Textbook of Concrete Technology 2nd Edition by Kulkarni, PD Ghosh RK and Phull, YR; New Age International (P) Ltd., Publishers, New Delhi - 2. Materials of Construction by Ghose; Tata McGraw Hill Publishing Co., Ltd., New Delhi - 3. Civil Engineering Materials by TTTI, Chandigarh; Tata McGraw Hill Publishing Co. Ltd., New Delhi - 4. Concrete Technology by Gambhir; Tata McGraw Hill Publishing Co., Ltd., New Delhi - 5. Building Construction by J Jha and Sinha; Khanna Publishers, Delhi - 6. Building Construction by Vazirani and Chandola; Khanna Publishers, Delhi - 7. Civil Engineering Materials by SV Deodhar and Singhai; Khanna Publishers, Delhi - 8. Soil Mechanics and foundation Engineering by SK Garg; Khanna Publishers, Delhi # SUGGESTED DISTRIBUTION OF MARKS # Part-A | Topic No. | Time Allotted (Hrs) | Marks Allotted (%) | |-----------|---------------------|--------------------| | 1 | 8 | 25 | | 2 | 10 | 31 | | 3 | 8 | 25 | | 4 | 6 | 19 | | Total | 32 | 100 | # Part-B | Topic No. | Time Allotted (Hrs) | Marks Allotted (%) | |-----------|---------------------|--------------------| | 1 | 4 | 12 | | 2 | 3 | 9 | | 3 | 3 | 9 | | 4 | 6 | 18 | | 5 | 4 | 16 | | 6 | 6 | 18 | | 7 | 6 | 18 | | Total | 32 | 100 | # Part-C | Topic No. | Time Allotted (Hrs) | Marks Allotted (%) | |-----------|---------------------|--------------------| | 1 | 10 | 31 | | 2 | 8 | 25 | | 3 | 8 | 25 | | 4 | 6 | 19 | | Total | 32 | 100 | 1. #### CE-330 SURVEYING - I L T P Cr 2 - 6 5 #### RATIONALE The important functions of a diploma civil engineer includes the jobs of detailed surveying, plotting of survey data, preparation of survey maps and setting out works While framing the curriculum for the subject of surveying, stress has been given to the development of the skill in each type of survey like chain surveying, compass surveying leveling, that the Civil Engineering diploma holder will normally be called upon to perform and plane table surveying, Field work should be a selected one so that student can check his work and have an idea of the results the extent of error in the work done by him. As far as possible, the surveys done should be got plotted, as this will also reveal errors in the work and develop skill in plotting. # DETAILED CONTENTS THEORY 1. Introduction: (3 hrs) - 1.1 Basic principles of surveying - 1.2 Concept and purpose of surveying, measurements-linear and angular, units of measurements - 1.3 Instruments used for taking these measurements, classification based on surveying instruments - 2. Chain surveying: (3 hrs) - 2.1 Purpose of chain surveying, principles of chain surveying - 2.2 Obstacles in chain surveying - 2.3 Errors in chain surveying - 2.4 Correction for measurements by erroneous length of chain, simple problems. ### 3. Compass surveying: (8 hrs) - 3.1 Purpose of compass surveying. Construction and working of prismatic compass, use of prismatic compass: Setting and taking observations - 3.2 Concept of following with simple numerical problems: - a) Meridian Magnetic and true - b) Bearing Magnetic, True and Arbitrary - c) Whole circle bearing and reduced bearing - d) Fore and back bearing - e) Magnetic dip and declination - 3.3 Local attraction causes, detection, errors and corrections, problems on local attraction, magnetic declination and calculation of included angles in a compass traverse - 3.4 Concept of a traverse Open and closed. Traversing with a compass. Checks for an open and closed traverse, plotting a traverse By included angles and by deflection angles, Concept of closing error, adjustment of error in the traverse graphically by proportionate method, - 4. Levelling: (10 hrs) - 4.1 Purpose of levelling, concept of a level surface, horizontal surface, vertical surface, datum, reduced level and bench marks - 4.2 Principle and construction of Dumpy level - 4.3 Concepts of line of collimation, axis of the bubble tube, axis of the telescope and vertical axis - 4.4 Levelling staff: single piece, folding, invar precision staff, telescopic - 4.5 Temporary adjustment: temporary adjustment of dumpy level - 4.6 Concept of back sight, foresight, intermediate sight, change point, to determine reduce levels - 4.7 Level book and reduction of levels by - 4.7.1 Height of collimation method and - 4.7.2 Rise and fall method - 4.8 Arithmetic checks, problem on reduction of levels, fly levelling, check leveling and profile levelling (L-section and X-section), errors in levelling, permissible limits, reciprocal levelling, testing and adjustment of IOP level. Numerical Problems. - 4.9 Computations of Areas of regular figures and irregular figures. Simpson's rule: prismoidel formula and graphical method, use of planimeter for computation of areas, numerical problems - 5. Plane Table Surveying (8 hrs) - 5.1 Purpose of plane table surveying, equipment used in plane table survey: - (a) Plane table - (b) Alidade (Plain and Telescopic) - (c) Accessories - 5.2 Setting of a plane table: - (a) Centering - (b) Levelling - (c) Orientation - 5.3 Methods of plane table surveying - (a) Radiation, - (b) Intersection - (c) Traversing - (d) Resection - 5.4 Two point problem - 5.5 Three point problem by - a) Mechanical Method(Tracing paper) - b) Bessel's Graphical Method - 5.6 Errors in plane table survey and precautions to control them. Testing and adjustment of plane table and alidade #### PRACTICAL EXERCISES - I. Chain surveying: - i) a) Ranging a line - b) Chaining a line and recording in the field book - c) Testing and adjustment of chain - d) Taking offsets perpendicular and oblique (with a tape only) - e) Setting out right angle with a tape - ii) a) Chaining of a line involving reciprocal ranging - b) Taking off sets and setting out right angles, with cross staff and Indian optical square - iii) Chain survey of a small area (field work and plotting) - iv) Chaining a line involving obstacles to ranging - II. Compass Surveying: - i) a) Study of prismatic compass - b) Setting the compass and taking observations - c) Measuring angles between the lines meeting at a point - ii) Traversing with the prismatic compass and chain (Recording and plotting by included angles) # III. Levelling: - i) a) Study of dumpy level and levelling staff - b) Temporary adjustments of a Dumpy level - c) Taking staff readings on different stations from the single setting and finding differences of level between them - ii) a) Study of IOP level - b) Its temporary adjustments - c) Taking staff readings on different stations from the single setting and finding differences of level between them - iii) Longitudinal and cross sectioning of a road/railway/canal - iv) Setting a gradient by dumpy and IOP level # IV. Plane Table Surveying: - i) a) Study of the plane table survey equipment - b) Setting the plane table - c) Marking the North direction - d) Plotting a few points by radiation method - ii) a) Orientation by - Trough compass - Back sighting - b) Plotting few points by intersection, radiation and resection method - iii) Traversing an area with a plane table (at least five lines) - iv) a) Two point problem - b) Three point problem by - Tracing paper method - Bessel's graphical method - Trial and Error method - V. Layout of Buildings (from given drawing of two room residential building) #### INSTRUCTIONAL STRATEGY This is highly practice-oriented course. While imparting theoretical instructions, teachers are expected to demonstrate the use of various instruments in surveying, stress should be laid on correct use of various instruments so as to avoid/minimize errors during surveying. It is further recommended that more emphasis should be laid in conducting practical work by individual students ### **RECOMMENDED BOOKS** - i) Narinder Singh; "Surveying"; New Delhi, Tata McGraw Hill Publishing Co Ltd. - ii) Hussain, SK and Nagraj, MS; "Text Book of Surveying"; New Delhi, S Chand and Co Ltd. - iii) Deshpande, RS; "A Text Book Surveying and Levelling"; Poona, United Book Corporation - iv) Kocher, CL; "A Text Book of Surveying"; Ludhiana, Katson Publishing House - v) Kanetkar,TP and Kulkarni, SV., "Surveying and Leveling", Poona, AVG Parkashan - vi) Kanetkar, TP; and Kulkarni, SV; "Surveying and Leveling-Vol.2" Poona, AVG Prakashan - vii) Punmia, BC; "Surveying and Leveling Vol. 2", Delhi Standard Publishers Distributors. - viii) Shahai, PB; "A Text Book of Surveying Vol. 2", Oxford and IBH Publishing Co. ### SUGGESTED DISTRIBUTION OF MARKS | Topic No. | Time Allotted (Hrs) | Marks Allotted (%) | |-----------|---------------------|--------------------| | 1 | 3 | 9 | | 2 | 3 | 9 | | 3 | 8 | 25 | | 4 | 10 | 32 | | 5 | 8 | 25 | | Total | 32 | 100 | #### CE-331 CONSTRUCTION MATERIALS L T P Cr 3 - 2 4 #### RATIONALE Civil Engineering diploma holders have to supervise construction of various types of civil works involving use of various materials like stones, bricks and tiles, cement and cement based products, lime, timber and wood based products, paints and varnishes, metals and other miscellaneous materials. The students should have requisite knowledge regarding characteristics, uses and availability of various building materials and skills in conducting tests to determine suitability of materials for various construction purposes. In addition, specifications of various materials should also be known (PWD/BIS) for effective quality control. # DETAILED CONTENTS THEORY 1. Building Stones: (04 hrs) - 1.1 Classification of Rocks: (General Review) - 1.1.1 Geological classification: Igneous, sedimentary and metamorphic rocks - 1.1.2 Chemical classification; Calcareous, argillaceous and siliceous rocks - 1.1.3 Physical classification: Unstratified, startified and foliated rocks - 1.2 General characteristics of stones Marble, Kota stone, Granite, Sand, Trap, Basalt stone, Lime stone and Slate - 1.3 Requirements of good building stones - **1.4 Identification of common building stones - 1.5 Various uses of stones in construction - 1.6 Quarrying of stones by blasting and its effect on environment - 2. Bricks and Tiles: (09 hrs) - 2.1 Introduction to bricks - 2.2 Raw materials for brick manufacturing and properties of good brick making earth - 2.3 Manufacturing of bricks - 2.3.1 Preparation of clay (manual/mechanically) - **2.3.2 Moulding: hand moulding and machine moulding brick table; drying of bricks, burning of bricks, types of kilns (Bull's Trench Kiln and Hoffman's Kiln), process of burning, size and weight of standard brick; traditional brick, refractory brick, clay-flyash bricks, sun dried bricks, only line diagram of kilns - 2.4 Classification and specifications of bricks as per BIS: 1077 - 2.5 Testing of common building bricks as per BIS: 3495 Compressive strength, water absorption – hot and cold water test, efflorescence, Dimensional tolerance, soundness - 2.6 Tiles - 2.6.1 Building tiles; Types of tiles-wall, ceiling, roofing and flooring tiles - 2.6.2 Ceramic, terrazo and PVC tiles, cement tiles: their properties and uses - 2.7 Stacking of bricks and tiles at site - 3. Cement: (08 hrs) - **3.1 Introduction, raw materials, flow diagram of manufacturing of cement by wet process - 3.2 Various types of Cements, their uses and testing: Ordinary portland cement, rapid hardening cement, low heat cement, high alumina cement, blast furnace slag cement, white and coloured cement, portland pozzolana cement, super sulphated cement - 3.3 Properties of cement - 4. Lime: (04 hrs) - 4.1 Introduction: Lime as one of the cementing materials - 4.2 Classification and types of lime as per BIS Code - 4.3 Calcination and slaking of lime - 5. Timber and Wood Based Products: (07 hrs) - 5.1 Identification and uses of different types of timber: Teak, Deodar, Shisham Sal, Mango, Kail, Chir, Fur, Willow - ** 5.2 Market forms of converted timber as per BIS Code - 5.3 Seasoning of timber: Purpose, methods of seasoning as per BIS Code - 5.4 Properties of timber and specifications of structural timber - 5.5 Defects in timber, decay in timber - 5.6 Preservation of timber and methods of treatment as per BIS - 5.7 Other wood based products, their brief description of manufacture and uses: laminated board, block board, fibre board, hard board, sunmica, plywood, veneers, nu-wood #### 6. Paints and Varnishes: (06 hrs) - 6.1 Introduction, purpose and use of paints - 6.2 Types, ingredients, properties and uses of oil paints, water paints and cement paints - 6.3 Covering capacity of various paints - 6.4 Types, properties and uses of varnishes 7. Metals: (04 hrs) - 7.1 Ferrous metals: Composition, properties and uses of cast iron, mild steel, HYSD steel, high tension steel as per BIS. - 7.2 Commercial forms of ferrous, metals. ### 8. Miscellaneous Materials: (05hrs) - 8.1 Plastics Introduction and uses of various plastic products in buildings such as doors, water tanks and PVC pipes - 8.2 Asbestos Introduction, specification and uses of asbestos in roofing sheets, pipes and tanks - 8.3 Types and uses of insulating materials for sound and thermal insulation - 8.4 Construction chemicals like water proofing compound, epoxies, polymers - 8.5 Water proofing, termite proofing and fire resistance materials types and uses - 8.6 Materials used in interior decoration works like POP NOTE: **A field visit may be planned to explain and show the relevant things #### **PRACTICAL EXERCISES:** - i) To identify different types of stones - ii) To determine the crushing strength of bricks - iii) To determine the water absorption of bricks and stones - iv) To identify various types of timbers such as: Teak, Sal, Chir, Sissoo, Deodar, Kail & Hollock - v) To determine fineness (by sieve and blaine method) of cement - vi) To determine normal consistency of cement - vii) To determine initial and final setting times of cement - viii) To determine soundness of cement - ix) To determine compressive strength of cement ### INSTRUCTIONAL STRATEGY Teachers are expected to physically show various materials while imparting instructions. Field-visits should also be organized to show manufacturing processes and use of various materials in Civil engineering works. Students should be encouraged to collect sample of various building materials so as to create a museum of materials in the polytechnic. #### RECOMMENDED BOOKS - 1) Sharma, SK; and Mathur, GC; "Engineering Materials;" Delhi-Jalandhar, S. Chand and Co. - 2) Surendra Singh; "Engineering Materials;" New Delhi, Vikas Publishing House Pvt. Ltd. - 3) Chowdhuri, N; "Engineering Materials;" Calcutta, Technical Publishers of India. - 4) Bahl, SK; "Engineering Materials;" Delhi, Rainbow Book Co. - 5) TTTI, Chandigarh "Civil Engineering Materials:" New Delhi Tata McGraw Hill Publication - 6) Kulkarni, GJ; "Engineering Materials;" Ahmedabad, Ahmedabad Book Depot. - 7) Shahane; "Engineering Materials"; Poona, Allied Book Stall. - 8) Gurcharan Singh; "Engineering materials", Delhi Standard Publishers Distributors - 9) SC Rangawala, "Construction Materials", Charotar Publishers - 10) Alam Singh, "Constrution Materials" - Dr. Hemant Sood "Lab Manual in Testing of Engineering Materials", New Age International (P) Ltd., New Delhi # SUGGESTED DISTRIBUTION OF MARKS | Topic No. | Time Allotted (Hrs) | Marks Allotted (%) | |-----------|---------------------|--------------------| | 1 | 4 | 8 | | 2 | 9 | 20 | | 3 | 8 | 16 | | 4 | 4 | 8 | | 5 | 7 | 14 | | 6 | 6 | 12 | | 7 | 4 | 8 | | 8 | 6 | 14 | | Total | 48 | 100 | #### CE-332 BUILDING CONSTRUCTION L T P Cr 4 - 2 5 #### **RATIONALE** Diploma holders in Civil Engineering are supposed to supervise construction of buildings. To perform above task, it is essential that students should have knowledge of various sub components of buildings like foundations, walls, roofs, stair cases, floors etc., and their constructional details. Therefore, the subject of Building Construction is very important for Civil Engineering diploma holders. ### **DETAILED CONTENTS** #### THEORY: 1. Introduction: (1 hr) - 1.1 Definition of a building, classification of buildings based on occupancy - 1.2 Different parts of a building - 2. Foundations: (5 hrs) - 2.1 Concept of foundation and its purpose - 2.2 Types of foundation-shallow and deep - **2.2.1 Shallow foundation constructional details of: Spread foundations for walls, thumb rules for depth and width of foundation and thickness of concrete block, stepped foundation, masonary pillars and concrete columns - 2.3 Earthwork - 2.3.1 Layout/setting out for surface excavation, cutting and filling - 2.3.2 Excavation of foundation, trenches, shoring, timbering and dewatering - 3. Walls: (4 hrs) - 3.1 Purpose of walls - 3.2 Classification of walls load bearing, non-load bearing, dwarf wall, retaining, breast walls and partition walls - 3.3 Classification of walls as per materials of construction: brick, stone, reinforced brick, reinforced concrete, precast, hollow and solid concrete block and composite masonry walls - 3.4 Partition walls: Constructional details, suitability and uses of brick and wooden partition walls - 3.5 Mortars: types, selection of mortar and its preparation - 3.6 Scaffolding, construction details and suitability of mason's brick layers and tubular scaffolding, shoring, underpinning 98 4. Masonry (8 hrs) 4.1 Brick Masonry: Definition of terms, bond, facing, backing, hearting, column pillar, jambs, reveals soffit, plinth masonry, header, stretcher, bed of bricks bat, queen closer, king closer, frog and quoin, course - 4.1.1 Bond meaning and necessity; English, flemish bond and other types of bonds - 4.1.2 Construction of brick walls –methods of laying bricks in walls, precautions observed in the construction of walls, methods of bonding new brick work with old (toothing, raking, back and block bonding), Expansion and contraction joints # 4.2 Stone Masonry - 4.2.1 Glossary of terms natural bed, bedding planes, string course, corbel, cornice, block in course grouting, moulding, templates throating, through stone, parapet, coping, plaster and buttress - 4.2.2 Types of stone masonry, rubble masonry, random and coursed ashlar masonry, principles to be observed in construction of stone masonry walls ### 5. Arches and Lintels: (5 hrs) - 5.1 Meaning and use of arches and lintels: - Glossary of terms used in arches and lintels abutment, pier, arch ring, intrados, soffit, extrados, voussoiers, springer, springing line, crown, key stone, skew back, span, rise, depth of an arch, haunch, spandril, jambs, bearing, thickness of lintel, effective span - 5.3 Arches: - 5.3.1 Types of Arches Semi circular, segmental, elliptical and parabolic, flat, inverted and relieving - 5.3.2 Stone arches and their construction - 5.3.3 Brick arches and their construction #### 5.4 Lintels - 5.4.1 Purpose of lintel - 5.4.2 Materials used for lintels - 5.4.3 Cast-in-situ and pre-cast lintels - 5.4.4 Lintel along with sun-shade or chhajja #### **6. Doors, Windows and Ventilators: (3 hrs) - 6.1 Glossary of terms with neat sketches - 6.2 Classification based on materials and their suitability for different situations (6 hrs) #### *7. Damp Proofing and Water Proofing - 7.1 Dampness and its ill effects on bricks, plaster, wooden fixtures, metal fixtures and reinforcement, damage to asthetic appearance, damage to heat insulating materials, damage to stored articles and health, sources and causes of dampness - 7.2 Types of dampness - moisture penetrating the building from outside e.g. rainwater, surface water, ground moisture - Moisture entrapped during construction i.e. moisture in concrete, masonry 7.3 construction and plastering work etc. - Moisture which originates in the building itself i.e. water in kitchen and 7.4 bathrooms etc. - 7.5 Damp proofing materials and their specifications: rich concrete and mortar, bitumen, bitumen mastic, polymer coating, use of chemicals - Damp proofing of: basement, ground floors, plinth and walls, special 7.6 damp proofing arrangements in bathrooms, WC and kitchen, damp proofing for roofs and window sills **8. Floors (6 hrs) - 8.1 Glossary of terms-floor finish, topping, under layer, base course, rubble filling and their purpose - 8.2 Types of floor finishes - cast-in-situ, concrete flooring (monolithic, bonded) Terrazo tile flooring, stone (marble and kota) flooring, PCV flooring, Terrazo flooring, Timber flooring, description with sketches. The methods of construction of concrete, terrazzo and timber floors and their BIS specifications 9. Roofs (6 hrs) - 9.1 Glossary of terms for pitched roofs - batten, eaves, facia board, gable, hip, lap, purlin, rafter, rag bolt, valley, ridge - 9.2 Types of roofs, concept of flat, pitched and arched roofs - False ceilings using gypsum, plaster boards, cellotex, fibre boards 9.3 10. Stairs (5 hrs) - 10.1 Glossary of terms: Staircase, winders, landing, stringer, newel, baluster, riser, tread, width of staircase, hand-rail, nosing - Classification of staircase on the basis of material RCC, timber, steel, 10.2 Aluminium - 10.3 Planning and layout of staircase: Relations between rise and tread, determination of width of stair, landing etc - Various types of layout straight flight, dog legged, open well, quarter 10.4 turn, half turn (newel and geometrical stairs), bifurcated stair, spiral stair ### 11. Surface Finishes (6 hrs) - 11.1 Plastering classification according to use and finishes like grit finish, rough cast, pebble dashed, concrete and stone cladding, plain plaster etc., dubbing, proportion of mortars used for different plasters, techniques of plastering and curing - 11.2 Pointing different types of pointing and their methods - 11.3 Painting preparation of surface, priming coat and application of paints on wooden, steel and plastered wall surfaces - White washing, colour washing and distempering, polishing, application of cement and plastic paints - 11.5 Commonly used water repellent for exterior surfaces, their names and applications ### 12. Anti Termite Measures (As per IS 6313 –I – III) (5 hrs) - 12.1 Introduction, site preparation and chemicals used in anti-termite treatment - 12.2 Treatment of masonry foundation - 12.3 Treatment of RCC foundation - 12.4 Treatment of top surface of earth filling - 12.5 Treatment of junction of walls and floors - 12.6 Treatment along external perimeter of building - 12.7 Treatment and selection of timber - 12.8 Treatment in existing buildings # 13. Building Planning (4 hrs) - 13.1 Site selection: Factors to be considered for selection of site for residential, commercial, industrial and public building - 13.2 Basic principles of building planning, arrangement of doors, windows, cupboards etc for residential building - 13.3 Orientation of building as per IS: 7662 in relation to sun and wind direction, rains, internal circulation and placement of rooms within the available area. - 13.4 Planning of building services # **Note** * An expert may be invited from field/industry for extension lecture ** A field visit may be planned to explain and show the relevant things #### PRACTICAL EXERCISES - i) Demonstration of tools and plants used in building construction - ii) Layout of a building: two rooms building with front verandah - iii) To construct brick bonds (English bond only) in one, one and half and two brick thick: (a) Walls for L, T and cross junction (b) Columns - iv) Demonstration of following items of work at construction site: - a) Timbering of excavated trenching - b) Damp proof courses - c) Construction of masonry walls - d) Flooring: Laying of \flooring on an already prepared lime concrete base - e) Plastering and pointing - f) Use of special type of shuttering/cranes/heavy machines in construction work - g) RCC work - h) Pre-construction and post construction termite treatment of building and woodwork #### INSTRUCTIONAL STRATEGY While imparting instructions in this subject, teachers are expected to take students to work site and explain constructional process and special details for various sub-components of a buildings. It is also important to make use of audio visual aids/video films (if available) to show specialised operations. The practical work should be given due importance and efforts should be made that each student should perform practical work independently. For carrying out practical works, polytechnics should have building yard where enough raw materials is made available for students to perform practical work ### **RECOMMENDED BOOKS** - 1. Gupta, Sushil Kumar, Singla, DR, and Juneja BM; "A Text Book of Building Construction"; Ludhiana, Katson Publishing House. - 2. Deshpande, RS and Vartak, GV; "A Text Book of Building Construction"; Poona, United Book Corporation. - 3. Rangwala, SC: "Building Construction"; Anand, Charotar Book Stall - 4. Kulkarni, GJ; "A Text Book of Building Construction"; Ahmedabad Book Depot - 5. Arora, SP and Bindra, SP; "A Text Book of Building Construction"; New Delhi Dhanpt Rai and Sons. - 6. Sharma, SK and Kaul, BK; "A Text Book of Building Construction"; Delhi, S Chand and Co. - 7. Sushil Kumar; "Building Construction"; Standard Publishers Distributors, Delhi - 8. Moorthy, NKR; "A Text Book of Building Construction"; Poona, Engineering Book Publishing Co. - 9. SP 62 Hand Book of BIS - 10. B.I.S. 6313 Part 1, 2, 3 # SUGGESTED DISTRIBUTION OF MARKS | Topic No. | Time Allotted (Hrs) | Marks Allotted (%) | |-----------|---------------------|--------------------| | 1 | 1 | 1 | | 2 | 5 | 8 | | 3 | 4 | 6 | | 4 | 8 | 14 | | 5 | 5 | 8 | | 6 | 3 | 5 | | 7 | 6 | 9 | | 8 | 6 | 9 | | 9 | 6 | 9 | | 10 | 5 | 8 | | 11 | 6 | 9 | | 12 | 5 | 8 | | 13 | 4 | 6 | | Total | 64 | 100 | #### **CE-333 BUILDING DRAWING** L T P Cr - 6 3 #### **RATIONALE** Drawing is the language of engineers. Engineering is absolutely incomplete without a thorough knowledge of drawing. A Civil Engineering diploma holder must be capable of sketching detailed constructional drawing of various components of building for the purpose of communication with the craftsman. Planning of small buildings, developing a line plan, dimensioning, key plan, drainage plan should be a part of curriculum. The diploma engineer must be conversant with reading and interpretation of drawing for execution of work # DETAILED CONTENTS Section-I **Drawing No. 1**: (2 sheets) Details of spread footing foundations, load bearing and non-load bearing wall for given thickness of walls with the help of given data or rule of the thumb, showing offsets, position of DPC; details of basement showing necessary damp proofing **Drawing No. 2**: (one sheet) Plans of 'T' and Corner junction of walls of 1 Brick, 1-1/2 Brick and 2 brick thick in English bond **Drawing No. 3**: (two sheets) Elevation, sectional plan and sectional side elevation of flush door, panelled door, panelled and glazed door, steel windows and aluminum windows. Sketches of various joints of different members #### Section-II **Drawing No. 4**: (two sheets) Wooden roof truss (king post, queen post) showing details of joints, fixation of roof coverings, eaves and gutters. **Drawing No. 5**: (one sheet) Drawing plan, elevation of a small building by measurement. **Drawing No. 6**: (four sheets) Drawing detailed plan, elevation and section of a two room residential building from a given line plan, showing details of foundations, roof and parapet **Drawing No. 7**: (one sheet) Detailed plan, sectional elevation of dog legged staircase **Drawing No. 8**: (one sheet) Drawings of following floors Cement concrete floors on ground and at first floor - i) Conglomerate - ii) Bonded cement concrete flooring - iii) Terrazo flooring **Drawing No. 9:** (one sheet) Drawing of flat roof, showing tile terracing, gutters etc. #### **Section-III** **Drawing No. 10**: (one sheet) Drawing details of damp proofing arrangement of roofs, floors, basement and walls as per BIS Code #### NOTE: - a) All drawings should be as per BIS code and specifications in SI Units - b) Intensive practice of reading and interpreting building drawings should be given #### RECOMMENDED BOOKS - 1. Civil Engineering Drawing by RS Malik, Asia Publishing House - 2. Civil Engineering Drawing by V.B.Sikka. Katson Publishing, Ludhiana - 3. Civil Engineering Drawing by NS Kumar; IPH, New Delhi - 4. Principles of Building Drawing by MG Shah and CM Kale, MacMillan, Delhi - 5. Building Construction by Moorthy NRK - 6. Building Construction by Mitchell - 7. Building Construction by Meckay and Meckay - 8. Zaidi, SKA and Siddiqui, Suhail; Drawing and Design of Residential and Commercial Buildings, Standard Publishers and Distributors, Delhi. - 9. SP: 20 #### ECOLOGY AND ENVIRONMENTAL AWARENESS CAMP A diploma holder must have knowledge of different types of pollution caused due to industries and constructional activities so that he may help in balancing the eco system and controlling pollution by pollution control measures. He should also be aware of environmental laws related to the control of pollution. This is to be organized at a stretch for 3 to 4 days. Lectures will be delivered on following broad topics. There will be no examination for this subject. - 1. Basics of ecology, eco system and sustainable development - 2. Conservation of land reforms, preservation of species, prevention of advancement of deserts and lowering of water table - 3. Sources of pollution natural and man made, their effects on living and non-living organisms - 4. Pollution of water causes, effects of domestic wastes and industrial effluent on living and non-living organisms - 5. Pollution of air-causes and effects of man, animal, vegetation and non-living organisms - 6. Sources of noise pollution and its effects - 7. Solid waste management; classification of refuse material, types, sources and properties of solid wastes, abatement methods - 8. Mining, blasting, deforestation and their effects - 9. Legislation to control environment - 10. Environmental Impact Assessment (EIA), Elements for preparing EIA statements - 11. Current issues in environmental pollution and its control - 12. Role of non-conventional sources of energy in environmental protection